Protocol

Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan

Skin grafting in the amphibian *Xenopus laevis* has been used to detect not only allogeneic antigens that differ by minor H antigens or by one MHC haplotype, but also to detect ontogeny-specific antigens (including both emerging adult- and disappearing larval-specific) during metamorphosis. To understand the mechanisms underlying allogeneic tolerance or immune responses against larval- and/or adult-specific antigens, a complete MHC homozygous, inbred strain is the most appropriate experi-

Steinberg's solution $(10\times)$ < R>

Xenopus laevis (inbred J strain and/or gfp-Tg hybrid line) in rearing containers.

Equipment

Cotton sticks (Johnson and Johnson) (optional; see Step 8)

Digital camera (AxioCam HRc; ZEISS)

Filters (0.2-µm pore size) (Millipore GSWP04700)

Fine forceps (110-mm total length) (Natsume Seisakusho [Tokyo] MA-55) (sterilized with 70% ethanol)

Glass beakers (200-mL) (Iwaki Glass; Asahi Techno Glass, Tokyo)

Kimwipes

Liquid nitrogen

Microscissors (105-mm total length, 7-mm blade length) (Natsume Seisakusho MB-50-7) (sterilized with 70% ethanol)

Microscope (Leica M60)

Petri dishes (10-cm) (Corning 353803)

Plastic scale $(3 \times 3 \text{ mm}^2)$

Suture needle with thread (6-0 blue nylon polyamide) (Nescosuture ET0806NA45-KF2) Water aspirator pump (Sigma-Aldrich)

METHOD

- 1. One to two days before the operation, transfer the frogs to a rearing container of filter-sterilized (0.22 μ m) or autoclaved tap water. Keep them without feeding until the day of the operation.
- 2. On the day of the operation, gently wash the frogs in a glass beaker 10 times using sterilized water.
- 3. An esthetize the animals by immersing them in a glass beaker containing 0.05% MS222 solution.
- 4. Place a donor animal on its back on a sheet of Kimwipe of suitable size in a 10-cm Petri dish. Pour ice-cold $1\times$ Steinberg's solution with gentamicin over the animal until the top of the body is almost immersed in solution.

7. Add ice-cold 1× Steinberg's solut immersed. Transfer the skin graf	U			1	
(the hole on the back of the hos	00 0 1			water into th	e grant bed
(the note on the back of the nos	i) using forcep	13 (11g. 1D).			
C, 🕶 📣	* ,		, * ·		
0 40 0 1 1 1	.1 0.1				****

8. After grafting, immediately remove the Steinberg's solution using a water aspirator pump. Wipe off the solution around the graft >5 times, particularly at the junction between the graft and the host skin, using a Kimwipe or a cotton stick (Fig. 1E).

- 9. If necessary, close the back slit of the donor with sutures (Fig. 1F).
- 10. Post-operation, move the host frog to a cold 200-mL glass dish or beaker containing a small amount of ice-cold 1× Steinberg's solution with gentamicin to prevent drying of the animal. Place the dish on ice for 1 h (Fig. 1G).

11. Transfer the dish and incubate for 2–4 h in the dark at 4°C.

 μ = μ =

12. Transfer the dish and incubate overnight in the dark at 16°C.

13. Rear the host animal in a narrow glass beaker 2242-3 d at normal temperature (23°C-24°C) (Fig. 1H) with a small amount of 1× Steinberg's solution with gentamicin.

Problem (Steps 3, 11, and 12): Animals vomit during the course of grafting.				

Skin Grafting in *Xenopus laevis*: A Technique for Assessing Development and Immunological Disparity

Yumi Izutsu

Cold Spring Harb Protoc; doi: 10.1101/pdb.prot099788 originally published online January 3, 2019

Email Alerting Service	Receive free email alerts when new articles cite this article - click here.
Subject Categories	Browse articles on similar topics from <i>Cold Spring Harbor Protocols</i> . Developmental Biology (681 articles) Immunohistochemistry (81 articles) Immunology, general (112 articles) Xenopus (146 articles) Xenopus Transgenics (18 articles)

To subscribe to Cold Spring Harbor Protocols go to: http://cshprotocols.cshlp.org/subscriptions