Clinical Trials in Rare Diseases: Challenges in Design, Analysis, and Interpretation

Michael P. McDermott, Ph.D. University of Rochester Medical Center December 6, 2013

Overview

- Clinical trials in rare diseases present several challenges
 - Such trials are more prone to variability and may have power to detect only large treatment effects
 - Importance of study planning is magnified and planning requires more time
 - Critically important to forge collaboration between clinicians and statisticians

Institute of Medicine Report (2001)

 Several recommendations pertaining to the design, analysis, and interpretation of clinical trials that, for reasons that are unavoidable, are constrained to be small

Institute of Medicine Report (2001)

• Recommendations

- Define the research question
 - Need to help clinicians make therapeutic decisions
- Tailor the design
- Clarify methods of reporting of results in clinical trials
 - Research synthesis; clinical context
- Perform corroborative statistical analyses
 - Uncertainty regarding analysis assumptions
- Exercise caution in interpretation
 - Extrapolation of study results
- More research on alternative designs is needed

Clinical Trials in Rare Diseases

- Limited availability of resources

 Willing trial participants
 Funding sources
- In this setting, feasibility constraints can lead to compromises in important principles of sound trial design

Some Important Principles of Sound Trial Design

- Precise formulation of a focused research question
 - Prioritization of outcome variables and analyses
- Tailoring of study design to best answer the research question posed
 - Minimization of bias
 - Randomization
 - Blinding
 - Appropriate control group
 - Context of existing treatment
 - Use of placebo/sham treatment

Some Important Principles of Sound Trial Design

- Tailoring of study design to best answer the research question posed
 - Appropriate eligibility criteria
 - Generalizability vs. efficiency
 - Appropriate outcome measures
 - Reliable, valid, responsive, applicable
 - Duration of follow-up
 - Appropriate and feasible sample size
 - Appropriate measures for participant recruitment and retention
 - Frequency and timing of assessments
 - KISS principle

Outcome Variables

• Continuous

- Tend to be more responsive
- Meaningful?
- Normally distributed?
- Replicate measures can increase precision
- Time-to-event
 - Example: Disease milestone
- Categorical
 - Tend to be less responsive

Outcome Variables

- Use of longitudinal data

 Change from baseline to final visit
 Use of data from all visits
 Area under the response-time curve
 - Average of responses after a certain time point
 - Slope (rate of change)
 - Choice may depend on expected timing of onset/loss of maximal benefit
 - Choice also depends on the clinical question that is most relevant to address

Issues that Small Trials Are Better Equipped to Address

- Pharmacokinetics
 - Single- and multiple-dose studies
- Maximum tolerated dosage
- Short-term safety
- • •
 - -V · · ·
- Preliminary efficacy or futility
 - Acceptance of higher error rates (false positive, false negative)
- Selection of a treatment

Selection Designs

- Goal is to select, out of k potential treatments, the one with the best response
 - Randomized, parallel-group trial
 - Requires a much smaller sample size than a trial designed to formally test the null hypothesis of no treatment effects

Use of Historical Controls

• Advantages

- Approximately <u>four-fold fewer subjects required</u> compared to a two-arm trial with a concurrent control group
- Recruitment
- Dangers of using historical controls
 - Changes in ancillary care over time
 - Differences in rater behavior
 - Differences in entry criteria
 - Differences in recruitment of subjects
 - Lack of blinding
 - CMT-1a example

Consequences of the Use of Invalid Historical Controls

- Biases tend to favor treatment under study
- Ability to conduct subsequent confirmatory trials can be compromised
 - h
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
- Treatment can be worse than placebo

- Recent examples: minocycline and lithium in ALS

A rare disease is no excuse for a poorly designed study

Cross-Over Designs

- A cross-over trial is one in which subjects are given different treatments during different treatment periods, with the object of comparing the various treatments
- Treatments are given in a randomly determined sequence (e.g., A/B vs. B/A)

Two-Period Cross-Over Design

<u>Sequence</u>	Period 1	<u>Washout</u>	Period 2
A/B	A		В
B/A	В		А

Cross-Over Designs

- Appropriate for treatments that may offer short-term relief of signs or symptoms, not a cure for the condition
 - Asthma, hypertension, epilepsy, pain, other chronic conditions
- It is assumed that the symptom or condition will return ahETc4[c60non)33 Tm[)]TJi‡

Advantages of Cross-Over Designs

- Profound savings in sample size
 Within-subject comparisons
- Participants gain access to all treatments under study
 - May enhance recruitment/retention

Disadvantages of Cross-Over Designs

- Not suitable for all conditions – JNCL?
- Impact of subject withdrawal
- Importance of blinding is magnified
- Inconvenience to participants
 - Multiple treatment/washout periods
 - Total duration of follow-up

N-of-1 Trials

- Performed in multiple pairs of treatment/placebo periods
 - Example: AB BA BA AB . . .
 - Feasibility of multiple treatment periods
 - Same limitations as those for cross-over trials discussed earlier
- Require rapid onset/washout of the treatment and its effects
- Inference for individual patients is limited without having many periods
- A series of N-of-1 trials in different patients can be much more powerful
 - Random effects models can be used to combine information across patients

Adaptive Designs

- Pharmaceutical Research and Manufacturers of America (PhRMA) Working Group (2006):
 - " adaptive design, we refer to a clinical study design that uses accumulating data to decide how to modify aspects of the study as it continues, without undermining the validity

Adaptive Designs

- Validity
 - Correct statistical inference
 - Control of Type I and Type II errors
 - Minimization of bias
 - Consistency between stages of the trial
 - Low operational bias
- Integrity
 - Results are convincing to a broader scientific community
 - Pre-planned adaptations
 - Maintenance of the blind to interim analysis results

Some Types of Adaptive Designs

Kairalla et al. Trials 2012; 13:145

Adaptive Dose Finding

- Traditional approach in Phase II
 - Randomization to a relatively small number of fixed dosages (3-4) and placebo
 - Disadvantages
 - () · · · · ·
 - Optimal dosage may not be studied
 - Some of the studied dosages may not be useful
 - This may become apparent relatively quickly
 - Accumulating evidence may suggest early stopping for futility or identification of a sufficient dosage to study further

Response

Dosage

Response

Dosage

Seamless Phase II/III Designs

Dosage A

Dosage B

Dosage C

Placebo

Group Sequential Designs

- Interim analyses of accumulating data
 - Ethical issues
 - Efficiency/cost
 - Consideration of safety, efficacy, and futility
 - Problem of repeated significance testing
 - @ -
 - @
 - - and -spending functions
 - y · · · · · ·

Adaptive Designs

- There are many logistical and procedural issues that are introduced by the possibility of adaptation
 - Careful planning; evaluation of feasibility; infrastructure
- Trial integrity should be preserved by minimizing access to information on interim analyses and their results
 - Control of operational bias

Small is Not Big

- In a very rare disease, sacrifices in important areas may have to be considered
 - Early/middle development
 - Error rates (significance level; power)iddle devy74(dl)4

EXTRA SLIDES

Problems with Many Preliminary Studies

- Often, preliminary studies, particularly in rare diseases:
 - Are very small
 - Are uncontrolled
 - Do not address a focused question
 - Do little to enhance decision-making for further study of the intervention and, as a consequence, slow research progress

Potential Adverse Consequences of Small Trials

 Discarding of potentially effective treatments due to lack of statistically significant benefits
 V @

- P-values vs. confidence intervals

Inappropriate emphasis on informally defined

(or lack thereof)

• Illusion of safety

Role of Confidence Intervals in Trial Interpretation

% Difference in Rate of Progression	95% Confidence Interval	P-value	Evidence for Treatment Effect
30%	(-20%, 80%)	0.30	Inconclusive
30%	(20%, 40%)	0.003	Positive
2%	(-4%, 8%)	0.30	Negative
2%	(1%, 3%)	0.003	Positive, but not clinically important
2%	(-30%, 34%)	0.93	???

Role of Confidence Intervals in Trial Interpretation

% Difference in Rate of Progression	95% Confidence Interval	P-value	Evidence for Treatment Effect
30%	(-20%, 80%)	0.30	Inconclusive
30%	(20%, 40%)	0.003	Positive
2%	(-4%, 8%)	0.30	Negative
2%	(1%, 3%)	0.003	Positive, but not clinically important
2%	(-30%, 34%)	0.93	Inconclusive