STRONG CHILDREN'S RESEARCH CENTER

Summer 2018 Research Scholar

Name: Niloy singh

School: University at Albany

Mentor: Rachael Turner

ABSTRACT

Development of a Murine HE4 Knockout Model

Background: Human epididymis protein 4 (HE4), a protein encoded by the WFDC2 gene, is

known to be elevated in ovarian cancer patients. Serum HE4 level is utilized as a bio-marker for

ovarian cancer, however its exact function in both cancer and normal biology is unknown. To

further our understanding of HE4's biologic function, we have worked to generate a murine

knockout model of WFDC2.

Objective: WFDC2 was floxed with both a 3' and 5' loxp region. Floxed homozygotes were

developed and subsequently bred with CMV-Cre mice. This enabled the generation of

heterozygous germline HE4 knockout mice (WFDC2+/-). WFDC2 knockout heterozygotes were

then bred together, in an attempt to generate animals that were homozygous for the HE4

deletion.

Results: No homozygous knockouts have been achieved thus far. Several heterozygous
knockouts along with wild type (WFDC2 present on both alleles) were present. Additionally,
Mice were absent for LoxP which suggests that Cre had functioned as it was supposed to, this
suggests that knockout of He4 was embryonically lethal to the pups
Conclusion : HE4 appears to be essential for mouse embryo development, but it is unclear at
which stage of development it plays a role. We will investigate this further by analyzing murine
fetuses at different gestational ages to determine the exact timing of embryonic lethality