Ultra-High-Vacuum Secondary Ion Mass Spectrometer*

9		•	•	
	Toshiko Suzuki**	Toru Fujimura***	Keiichi Naganuma****	Masato Shimizu****
1 Introduction			er IX-70S made by VG-IC	
		•	•	

Compared with all other surface analyzing tech-

prominent features, including an extremely high sensitivity, a detecting capability of all elements, and a high

7 Main Fosturas and Spacifications

	measured. Other liquid metal ions can be applied by changing the chips of the ion source. The lens columns for Q_2^+ , C_3^+ and G_4^+ are controlled by the same	detection limits. ¹⁾ These are the most important elements in Si. Therefore it is necessary to analyze these elements with high precision. Adopting the slider of the
,		
, t	· -	
-		
	Neutral particles are produced in a primary ion beam column by colliding ions into residual gases. In order to depress the background from the neutral particles, all of	magnet) bakable, and connecting the differential lines make the system UHV. Backpressure is 7×10^{-11} mbar. Accordingly the backgrounds of these elements were
		-
·		
7		

keen_the_whole_system_at_ultra-high-vacuum_(UHV)

