## KAWASAKI STEEL GIHO Vol.10 (1978) No.2.3

|            | CDQ                     |            |                            |          |
|------------|-------------------------|------------|----------------------------|----------|
| First Coke | e Dry Quenching Plant a | t Chiba Wo | rks                        |          |
|            | (Yutaka Takahashi)      | ·          | (Takayuki Yurino)          | (Takeshi |
| Nakamoto   | o)                      |            |                            |          |
|            |                         |            |                            | _        |
| :          |                         |            |                            |          |
|            |                         |            |                            |          |
| (          | )                       |            | (CDQ : Coke Dry Quenching) |          |
|            |                         | 84         |                            |          |

## Synopsis:

The first CDQ plant by the use of inert gas instead of water, was installed at Chiba Works of Kawatetsu Chemical Industry Co., Ltd., a subsidiary of Kawasaki Steel Corporation, aiming at energy saving and improvement in coke quality. The plant consists of three sets of quenching tower, heat recovering boiler and gas circulating unit, and one hoisting unit. The plant has been operating satisfactorily with a high 84% efficiency in heat recovery and a great improvement in the mechanical properties especially its mechanical strength of coke.

(c)JFE Steel Corporation, 2003

UDC 662.741.35:66 - 936.1

千葉コークス乾式消火(CDQ)設備の概要

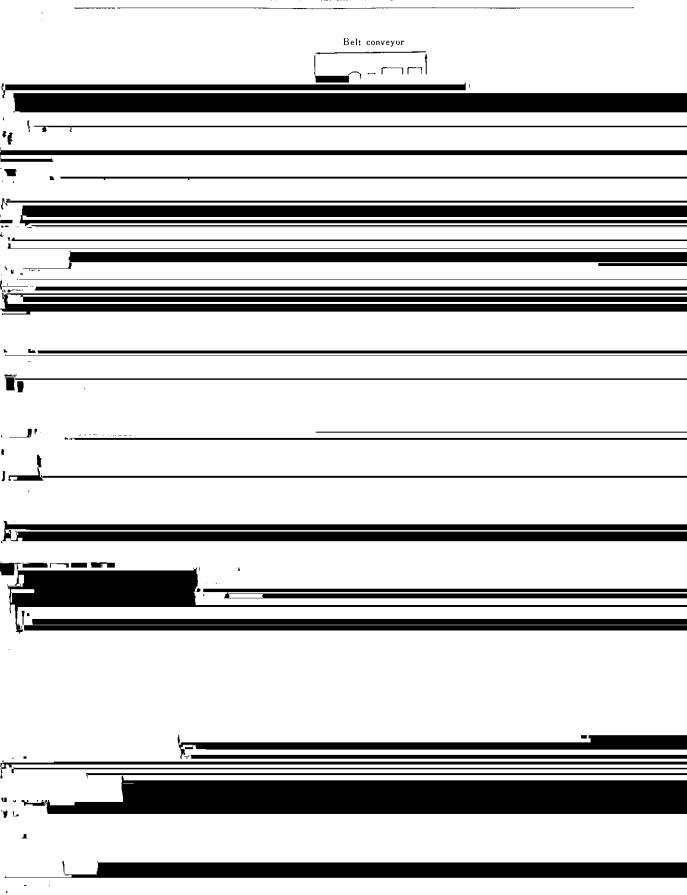
Rivet Coles Dever Change bir - DL . 1 1111 THE

高橋

裕\*

百合野 貴 之\*

Yutaka Takahashi


Takayuki Yurino

中本 毅\*\*

Takeshi Nakamoto

からなるソ連式の設備で、石川島播磨重工業㈱が ソ連ライセンス公団から技術導入し建設したもの である(Photo 1 衆服) \*\*影構け即和50年1日に





| Table 1 | į | Specifications | of | CDQ | (equipment) |
|---------|---|----------------|----|-----|-------------|
|---------|---|----------------|----|-----|-------------|

| No.6 coke oven    Number of ovens   Slevens < 2 batteries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |           | <del></del> |             |                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------|-------------|-------------|---------------------------------------|--|
| Cooling tower  Coke quenching ability Pre-chamber volume 120m² Cooling chamber volume 250m² Boiler  Type Single-drum water tube type Steam generation rate 30th (at 21 kg/cm², 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | No.6 coke oven |           | ovens       |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Page 1 catcher Dein 1 catcher 1  |           |                | <u>D:</u> |             | A-00        |                                       |  |
| Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm², 228°C)  Past catcher Dain 120m³  Cooling chamber volume 250m³  Single-drum water tube type 30t/h (at 21 kg/cm², 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Page 1 catcher Dein 1 catcher 1  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Page 1 catcher Dein 1 catcher 1  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Decided and the state of th |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Decided and the state of th |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Drive Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Drive Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Page 1 catcher Dein 1 catcher 1  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.        |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( )       |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Drive Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Deline Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Past catcher Drive Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228°C)  Page 1 catcher Dein 1 catcher 1  | r         | <u></u>        |           |             |             |                                       |  |
| Pre-chamber volume 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Boiler Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228 °C)  Pust catcher Delies 120 m <sup>3</sup> Cooling chamber volume 250 m <sup>3</sup> Type Single-drum water tube type Steam generation rate 30t/h (at 21 kg/cm <sup>2</sup> , 228 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Cooling tower  |           | Coke quench | ing ability | 56t/h×3units                          |  |
| Boiler  Type Steam generation rate  30t/h (at 21kg/cm², 228°C)  Plast catcher  Definition of the content of the                               |           |                |           | Pre-chamber | r volume    |                                       |  |
| Boiler Type Steam generation rate 30t/h (at 21kg/cm², 228°C)  Pust catcher  Decidents  D                               |           | _              |           |             |             |                                       |  |
| Steam generation rate  30t/h (at 21kg/cm², 228°C)  Past catcher  Delication rate  30t/h (at 21kg/cm², 228°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | Boiler         | Type      | <b>-</b>    |             |                                       |  |
| Past catcher  Doi: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |           | ration rate | 30t/h (st 2 | n water tube type<br>1 kg/cm² 228°C ) |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Dust catcher   |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 6       |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 7 - <b>3</b>   |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·         |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b> - |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |           |             |             |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>.</u>  |                |           | ·<br>       |             |                                       |  |

ガス流の均一化を図ることができる。 プリチャンバーはソ連式 CDQ の最大の特徴と いえるもので、この考案が CDQ の大型化と普及 に大きく寄与した。

循環系内の圧力およびガス成分を制御するために、プリチャンバーと冷却塔入口の2箇所にガス放散管を設けている。一方、円環煙道出口には希釈用空気導入口が、主送風機入口には希釈用 $N_2$ の吹込口が配置され、これらはすべてコントロール室より遠隔操作される。なお放散管にはパイロッ

コークス排出に際しては、冷却塔下部が 200~300 mmAq のガス圧を有しているため、 CO を含む循環ガスの噴出を防止する必要がある。そのためにファンネル下部に中間バンカーを配置し、その入口および出口ゲートは同時に開放しない機構とし、さらに上部ゲートを開く時に中間バンカー

中に飛散するのを防止している。さらに外気の侵入と循環ガスの漏洩を防止するため,送風機軸受部と主要伸縮継手部分を加圧  $N_2$  ガスによりシールしている。

CDA の作庫は - 赤執コニクフの移半い上が基 田 些 ) 1 年 1 (よ ) 1 2 4 . ) 

の変動があるので、これが CDQ 入熱の差となっ に、送風機を停止して冷却塔内をバンキング状態

の残留揮発分および循環ガス中の粉コ―クスの燃 焼等による発生熱も無視できない。 認められない。このことは設備の気密性が高いことを証明しており、O₂濃度が増加しない限り操業

上何ら問題とからない

スタート時の循環ガスは空気を使用するが、赤熱コークスを装入することにより空気中の $O_2$ がコークスの燃焼に消費され、 $O_2$ がほとんどない不活性ガスとなりそのまま循環使用される。しかし、

## 4.4 熱回収効率

CDQ の熱精算を Table 4 に示す。

入熱としては赤熱コークス顕熱が大部分を占めるが、その他にコークスの燃焼熱が 4.2% ある。

高く、コークス顕熱のほとんどは蒸気として回収されていることがわかる。

## 4・5 コークスの品質

ソ連での宝績によると、彭式消むしたコークス

の安定に大きく寄与するものと考えられる。

(2) コークスの機械的強度

ドラム強度( $DI_{15}^{30}$ )とタンブラー強度( $TI_6^{400}$ )はいずれも乾式コークスの方が高い値を示し、その差は $DI_5^{30}$ で2 4  $TI_5^{400}$ で1.6となっている。1

は湿式の場合と比べてその品質が改善されること が報告されている。しかし、これは理論上の裏付

かし、これは $\alpha$ ークス炉前における比較であり、 高炉前における比較によれば、その差は $\alpha$ 

あるが、現在まで当所で行ってきた品質比較試験の結果を報告する。 Table 5に試験結果一覧を示す。

(1) コークス水分

湿式法における平均値3.30%,標準偏差1.79%

ては、コークス炉前においては乾式コークスがすでに CDQ 内においてスタビライズしているのに対し、湿式コークスにはそれがないため、コークス炉前から高炉前までの輸送過程においてスタビライズ作用を大きく受けることによると考えられ

(3) コークス粒度

孔室等についてす 比較してでれる。 吐い晒せれ芋

乾式コークスのコークス炉前における平均粒度は48.6mm,湿式の場合は67.5mmであり,乾式コークスは約19mm粒径が小さい。粒度分布からみると,乾式コークスは湿式よりも中央に集中し均

一性が向上している。乾式コークスは、細粒化さ

として、粉塊の分離性が良く、塊コークスに付着して高炉に装入される粉コースの量が湿式コークスに比較して非常に少ないといえる。

は認められなかった。さらに乾式コークスの利点

以上のように、コークス品質の向上が認められることは真恒操業上にメリットが期待できるため