
## )) KAWASAKI STEEL GIHO Vol.30 (1998) No.3

# · · · \$ + ) \$ ( ) ž \$

Microstructure Control for Improving Sour Resistance of Pressure Vessel Steel Plates

|                                            | ni det star Ad Late Am |
|--------------------------------------------|------------------------|
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
| 4-r                                        |                        |
|                                            |                        |
| · 4                                        |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
| * <del>2 </del>                            |                        |
| -                                          | 4                      |
|                                            |                        |
|                                            |                        |
| Ď— .                                       |                        |
|                                            |                        |
|                                            |                        |
| ·<br>· · · · · · · · · · · · · · · · · · · |                        |
|                                            |                        |
|                                            |                        |
|                                            |                        |
| · · · ·                                    |                        |
|                                            |                        |
| (k                                         |                        |
|                                            |                        |
|                                            |                        |
| <b>—</b>                                   |                        |
|                                            |                        |
| **                                         |                        |
|                                            |                        |
| i.                                         |                        |
| <u>k</u>                                   |                        |
|                                            |                        |
|                                            |                        |

,



155

|                                                                                                                 | y                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| ·                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| ş                                                                                                               |                                                                                                                                                                   |
| ł                                                                                                               |                                                                                                                                                                   |
| ۲                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| ٨                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| J                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| <b>در کا ا</b><br>نمی <b>د د</b><br>۶                                                                           |                                                                                                                                                                   |
| •                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| ý                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| -                                                                                                               |                                                                                                                                                                   |
| -                                                                                                               |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
|                                                                                                                 | HIC 抵抗はこの範囲を下回る場合もまた上回る場合も劣化する。 降伏領域内では滑り面上を移動する可動転位の引力により水素原子                                                                                                    |
|                                                                                                                 | HIC 抵抗の劣化原因は、過小 ACR 値では形態制御が不足し、またが容易に移動し不連続界面を形成する Site-1 に流入集積する。分子<br>過十 ACD 値では過剰 Ca に E h. CaO 系の金だ物クラスタが形成さ (PE F-4)を濃度に達した時点で Creak 1 と同様の HIC (Creak-2) が |
| <b>}</b>                                                                                                        |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| 1                                                                                                               |                                                                                                                                                                   |
| ر العرب ا | - <u></u>                                                                                                                                                         |
| , 1. <b>.</b> .                                                                                                 |                                                                                                                                                                   |
| , <b>1</b>                                                                                                      |                                                                                                                                                                   |
| -                                                                                                               |                                                                                                                                                                   |
| -                                                                                                               |                                                                                                                                                                   |
| <u>*                                     </u>                                                                   |                                                                                                                                                                   |
|                                                                                                                 |                                                                                                                                                                   |
| -                                                                                                               |                                                                                                                                                                   |

発生する。ところが、図中の Site-2 のように潜在起点が降伏領域の 外にある場合 (ス。< ス。) は水素集積は応力に影響を受けず新たな 日にた発生したい。起告レーア渉たオスのみである。

| , <del></del>                                                  | 3.0      | $\tau_{max} = 245 \text{ MPa line}$ | 4.3  | 組織制御による耐 SOHIC 向上の例 |
|----------------------------------------------------------------|----------|-------------------------------------|------|---------------------|
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| · · · · · · · · · · · · · · · · · · ·                          |          |                                     |      |                     |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,_, |          |                                     |      |                     |
| r                                                              |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| ť                                                              |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| 1                                                              |          |                                     |      |                     |
| i.                                                             |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| · •                                                            |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| . <b>f</b> .                                                   |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| ······································                         | <u> </u> |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| ۲ ·                                                            |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| 17                                                             |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| r .                                                            |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| ····                                                           |          |                                     | <br> |                     |
| · 5,<br>1.                                                     |          |                                     |      |                     |
| · · · ·                                                        |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| _                                                              |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| ·                                                              |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
| •                                                              |          |                                     |      |                     |
| 2                                                              |          |                                     |      |                     |
| *<br>-                                                         |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                |          |                                     |      |                     |
|                                                                | 1 I I I  |                                     |      |                     |
|                                                                |          |                                     | <br> |                     |
| ,r                                                             |          |                                     |      |                     |
| · · · · · · · · · · · · · · · · · · ·                          |          |                                     | <br> |                     |
| ·                                                              |          |                                     |      |                     |

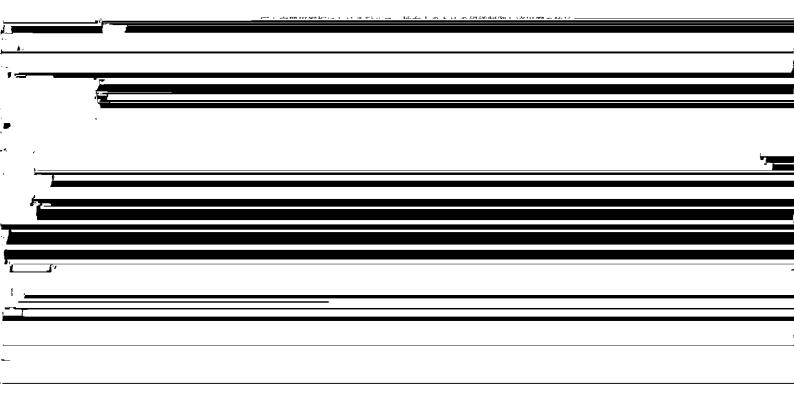



Table 3 HIC- and SOHIC-resistance of stees listed in Table 1

| Ctual | HIC Test | Life span i | n SSC Test | $\sigma_{t}$         | $\sigma_s$           | Rc                                | λ    | с     | ì*            |
|-------|----------|-------------|------------|----------------------|----------------------|-----------------------------------|------|-------|---------------|
| Steel | (CAR %)  | 0.7 SMYS    | 0.85 SMYS  | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | $(\sigma_{\rm f}/\sigma_{\rm s})$ | (µm) | (µm)  | $(\lambda/c)$ |
| N1    | 0        | +           | 45.2 h     | 182                  | 341                  | 0.53                              | 22   | > 6** | < 3.7         |
| N2    | 0        | +           | 4          | > 221                | 376                  | > 0.58                            | 24   | 6     | 4             |
| TM    | 0        | +           | +          | > 302                | 505                  | > 0.60                            | 20   | < 2   | > 10          |

+: Survived for 720 h,  $\sigma_s$ : Yield strength,  $\sigma_f$ : Failure stress threshold

\*\*Band-like structure

|          |   | 10 | Steel IM |  |
|----------|---|----|----------|--|
|          | • |    |          |  |
|          |   |    |          |  |
|          |   |    |          |  |
|          |   |    |          |  |
| <b>"</b> |   |    |          |  |
|          |   |    |          |  |
|          | - |    |          |  |
|          |   |    |          |  |
| •        |   |    |          |  |
|          |   |    |          |  |

| This Access of the second se | Plate   (mass%)     Steel   thickness   grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A51670   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A51670   0.18   0.30   1.14   0.006   0.001   0.34   0.19     C   50.8   A811cl 1   0.08   0.25   1.15   0.005   0.001   0.20   0.19         |                 |                                        |          |         |          |       |       |       |              | ·····   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|----------|---------|----------|-------|-------|-------|--------------|---------|
| Base   Steel   C   Si   Mn   P   S   C.u   Ni     A   88.9   A51670   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A51670   0.15   0.30   1.12   0.006   0.001   0.24   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plate   (mass%)     Steel   thickness   grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A51670   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A51670   0.18   0.30   1.14   0.006   0.001   0.34   0.19     C   50.8   A811cl 1   0.08   0.25   1.15   0.005   0.001   0.20   0.19         |                 |                                        |          | T-11- 4 | Ch       |       | 1_1   |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       | ; <u>,</u>   |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Steel   Steel   Steel   C   Si   Mn   P   S   Cu   Ni     A   88.9   A51670   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A51670   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A341cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Plate<br>thickness<br>(mm)   Steel<br>grade<br>(mm)   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Steel   Plate<br>thickness<br>(mm)   Steel<br>grade   C   Si   Mn   P   S   Cu   Ni     A   88.9   A516-70   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A516-70   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19 |                 |                                        |          |         |          |       |       |       |              |         |
| Steel   thickness   steel   C   Si   Mn   P   S   Cu   Ni     A   88.9   A51670   0.15   0.30   1.14   0.006   0.001   0.19   0.33     B   127   A51670   0.18   0.30   1.12   0.008   0.001   0.34   0.19     C   50.8   A841cl.1   0.08   0.25   1.15   0.005   0.001   0.20   0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Steel thickness<br>(mm) grade<br>grade C Si Mn P S Cu Ni   A 88.9 A516-70 0.15 0.30 1.14 0.006 0.001 0.19 0.33   B 127 A516-70 0.18 0.30 1.12 0.008 0.001 0.20 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                        |                 | Dista                                  |          |         |          |       |       |       | ••• •••      | (mass%) |
| (mm) grade   A 88.9 A51670 0.15 0.30 1.14 0.006 0.001 0.19 0.33   B 127 A51670 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A&11cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (mm) grade   A 88.9 A51670 0.15 0.30 1.14 0.006 0.001 0.19 0.33   B 127 A51670 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                        | Steel           | thickness                              |          | C       | 5        | Мо    | р     | c     | 0            | N.I.*   |
| A 88.9 A51670 0.15 0.30 1.14 0.006 0.001 0.19 0.33   B 127 A51670 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A 88.9 A51670 0.15 0.30 1.14 0.006 0.001 0.19 0.33   B 127 A51670 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                     | SIECI           |                                        | grade    | C       | 51       | IVITI | I-    | 5     | Cu           | Ni      |
| B 127 A516-70 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B 127 A51670 0.18 0.30 1.12 0.008 0.001 0.34 0.19   C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                                                                          | A               |                                        | A516-70  | 0.15    | 0.30     | 1 14  | 0.006 | 0.001 | 0.19         |         |
| <u>C</u> 50.8 <u>A841cl.1</u> 0.08 0.25 1.15 0.005 0.001 0.20 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C 50.8 A841cl.1 0.08 0.25 1.15 0.005 0.001 0.20 0.19   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                        |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 | 00.0                                   | A641(1,1 | 0.08    | 0.23     | 1.15  | 0.005 | 0.001 | 0.20         | 0.19    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        | 1        |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | Ct 1            | -<br>                                  | Tr       | NI      | <b>T</b> | . 1   | 0     |       | <b>m</b> (1) | 100.1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | , <b>11</b> 7 8 | <u>,</u>                               |          | -       | •        |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | 1               |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | ,               |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | ^^ <u></u>      | ، <u>د</u> ۲۰۰٬۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ | ••••     |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   | •               |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                   |                 |                                        |          |         |          |       |       |       |              |         |

.'

Ì.

١

159

i (

11.

|                      | Steel                                          | Plate thickness<br>(mm) | Groove shape<br>(mm) | Number of passes | Current (A)<br>Voltage (V)<br>Velocity (cm/min)  | Heat input<br>(kJ/mm) | Preheat and<br>inter-pass<br>temp. (°C) |
|----------------------|------------------------------------------------|-------------------------|----------------------|------------------|--------------------------------------------------|-----------------------|-----------------------------------------|
|                      | A                                              | 88.9                    | Doubel V (14°)       | BP; 24<br>FP; 11 | 480~550<br>29~34<br>32~39                        | 31                    | 78~183                                  |
|                      | В                                              | 127                     | Doubel V (30°)       | BP; 50<br>FP; 14 | $450 \sim 600$<br>29 $\sim 34$<br>60 $\sim 62^*$ | 38                    | 102~148                                 |
|                      |                                                |                         |                      |                  |                                                  |                       |                                         |
|                      |                                                |                         |                      |                  |                                                  |                       |                                         |
|                      |                                                |                         |                      |                  |                                                  |                       |                                         |
|                      |                                                |                         |                      |                  |                                                  |                       |                                         |
|                      |                                                | P2 🖷 ,                  | ` <b></b>            |                  |                                                  |                       |                                         |
|                      | <b>~</b>                                       | ₽ <b>⊇ ₩</b>            |                      |                  |                                                  |                       |                                         |
| () <sup>7, w</sup> a | e .<br>grata —                                 | F2 🐱 🔪                  |                      |                  |                                                  |                       |                                         |
| O(**•.               | <b>.</b>                                       |                         | \$                   |                  |                                                  |                       |                                         |
|                      | e .<br>grata                                   | ₽ <u>₽</u> ₩,           | ¥ <b></b>            |                  |                                                  |                       |                                         |
| <br>                 | <b>g</b>                                       | F 2                     | *                    |                  |                                                  |                       |                                         |
| O/~~                 | <b>e</b> • • • • • • • • • • • • • • • • • • • |                         |                      |                  |                                                  |                       |                                         |
| <br>                 |                                                | ₽ <b>2 • •</b>          |                      |                  |                                                  |                       |                                         |

Wire  $\times$  Flux; KW 36  $\times$  KB 110 (Corresponding to AWS A5.17 F7A6-EH14), \*Tandem electrodes

| Table 7 Mechanical properties of SAW joints subjected to PWHT | Table 7 | Mechanical | properties | of SAW joints | subjected | to PWHT <sup>*</sup> |
|---------------------------------------------------------------|---------|------------|------------|---------------|-----------|----------------------|
|---------------------------------------------------------------|---------|------------|------------|---------------|-----------|----------------------|

|       | Plate     |            | Tensile test |      | V-Charpy impact test at 1/4 t | Maximum hard- |
|-------|-----------|------------|--------------|------|-------------------------------|---------------|
| Steel | thickness | Heat input | TS           | Test | Absorbed energy (J)           | ness value**  |

| <b>y</b>           | · · · · · · · · · · · · · · · · · · · |                                     |
|--------------------|---------------------------------------|-------------------------------------|
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
| ப –                |                                       |                                     |
|                    |                                       |                                     |
| ,- ¢               |                                       |                                     |
| · ·                |                                       |                                     |
|                    |                                       |                                     |
| <i>*</i>           |                                       |                                     |
| ý - T              |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
| · •                |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
| T                  |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
|                    |                                       |                                     |
| / 1 #1 1. 12 - / 1 | 旧の坦ム組縛でたる A 鋸で須された玉                   | る必要がある。これは Ca 添加により ACR 値を 1~3 の範囲に |
| フェフイト相とハーフイ♪       | ·相の混合組織である A 鋼で得られた下                  | るの女がのる。 これはももかがたまり へいた 胆で エージッジ 起却に |
|                    |                                       | カイルナイス しつけ おとわえ                     |
| 限界応力は、A516-70 の規   | 格 YS 下限の 60% (0.6 SMYS) であり、4         | 適正化することで実現される。                      |
|                    |                                       |                                     |
| 音で述べた印板 N1 よりも     | やや低い特性を示した。これは組織の粗                    | (2) 外部応力と水素圧力の相互作用による降伏領域内での HIC    |

章で述べた鋼板 N1 よりもやや低い特性を示した。これは組織の粗 大化による ス\* の減少によると考えられる。PWHT 条件下ではさら に劣化傾向を示したが、この条件で組織がほとんど変化しないこと を考えると降伏強さの低下に起因していると考えられる。これに対 して、TMCP の適用によってパーライトや疑似パーライトなどの

起点形成が助長されるとする潜在起点モデルにより特徴的な SOHIC 発生形態とその機構は説明可能である。 (3) 潜在起点モデルから,マトリックス降伏強さの上昇およびパ

ーライトコロニーなどの潜在起点の微細化と相互間隔の拡大が

.

| <b>'</b> =                                |  |
|-------------------------------------------|--|
| •                                         |  |
|                                           |  |
|                                           |  |
| <b>F</b> ,                                |  |
|                                           |  |
| . <b>1</b>                                |  |
| ۰                                         |  |
| ·                                         |  |
|                                           |  |
| <b>.</b>                                  |  |
|                                           |  |
| , h ) — — — — — — — — — — — — — — — — — — |  |
|                                           |  |
|                                           |  |
| <br>_                                     |  |
|                                           |  |
|                                           |  |
| ji                                        |  |